equiprobable values - definição. O que é equiprobable values. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é equiprobable values - definição

IN MATHEMATICS, THE SQUARE ROOT OF AN EIGENVALUE OF A NONNEGATIVE SELF-ADJOINT OPERATOR
Singular values; Singular Values
  • semi-axes]] of the ellipse.

Science, Technology, & Human Values         
SCIENTIFIC JOURNAL
User:Luke.j.ruby/Science, Technology & Human Values; Science, Technology, and Human Values; Science, Technology & Human Values; Sci. Technol. Hum. Values; Sci Technol Hum Values; Science, Technology and Human Values
Science, Technology, & Human Values (ST&HV) is a peer-reviewed academic journal that covers research on the relationship of science and technology with society. The journal's editor-in-chief is Edward J.
Misuse of p-values         
USING THE P-VALUE AS A “SCORE” IS COMMITTING AN EGREGIOUS LOGICAL ERROR: THE TRANSPOSED CONDITIONAL FALLACY
P-value fallacy; Misunderstandings about p-values; Misconceptions about p-values; Misconceptions of p-values; Misunderstandings of p-values
Misuse of p-values is common in scientific research and scientific education. p-values are often used or interpreted incorrectly; the American Statistical Association states that p-values can indicate how incompatible the data are with a specified statistical model.
Values scale         
Values Scales; Values scales
Values scales are psychological inventories used to determine the values that people endorse in their lives. They facilitate the understanding of both work and general values that individuals uphold.

Wikipédia

Singular value

In mathematics, in particular functional analysis, the singular values, or s-numbers of a compact operator T : X Y {\displaystyle T:X\rightarrow Y} acting between Hilbert spaces X {\displaystyle X} and Y {\displaystyle Y} , are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator T T {\displaystyle T^{*}T} (where T {\displaystyle T^{*}} denotes the adjoint of T {\displaystyle T} ).

The singular values are non-negative real numbers, usually listed in decreasing order (σ1(T), σ2(T), …). The largest singular value σ1(T) is equal to the operator norm of T (see Min-max theorem).

If T acts on Euclidean space R n {\displaystyle \mathbb {R} ^{n}} , there is a simple geometric interpretation for the singular values: Consider the image by T {\displaystyle T} of the unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of T {\displaystyle T} (the figure provides an example in R 2 {\displaystyle \mathbb {R} ^{2}} ).

The singular values are the absolute values of the eigenvalues of a normal matrix A, because the spectral theorem can be applied to obtain unitary diagonalization of A {\displaystyle A} as A = U Λ U {\displaystyle A=U\Lambda U^{*}} . Therefore, A A = U Λ Λ U = U | Λ | U {\textstyle {\sqrt {A^{*}A}}={\sqrt {U\Lambda ^{*}\Lambda U^{*}}}=U\left|\Lambda \right|U^{*}} .

Most norms on Hilbert space operators studied are defined using s-numbers. For example, the Ky Fan-k-norm is the sum of first k singular values, the trace norm is the sum of all singular values, and the Schatten norm is the pth root of the sum of the pth powers of the singular values. Note that each norm is defined only on a special class of operators, hence s-numbers are useful in classifying different operators.

In the finite-dimensional case, a matrix can always be decomposed in the form U Σ V {\displaystyle \mathbf {U\Sigma V^{*}} } , where U {\displaystyle \mathbf {U} } and V {\displaystyle \mathbf {V^{*}} } are unitary matrices and Σ {\displaystyle \mathbf {\Sigma } } is a rectangular diagonal matrix with the singular values lying on the diagonal. This is the singular value decomposition.